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1. Taking care of your board

There are a few things that you should beware of as they may cause serious damage to the board.

� Like all circuit boards aijuboard is sensitive to electrostatic discharge (ESD). While circuit boards
are generally less sensitive than individual chips, you probably should not touch aijuboard directly
after stroking your cat.

� Applying too much voltage to any pin will cause potentially serious damage where ‘too much volt-
age’ can be as little as 1.1 V for pins nominally 1.0 V. In particular the absolute maximum for the
3.3 V GPIO pins is 3.85 V: Do not connect them to 5 V logic!

� Take care not to short 5 V to either logic pins or 3.3 V.

� Do not attempt to operate aijuboard with a power supply of the wrong voltage or wrong polarity. Do
not attempt to use an unregulated power supply.

� There is a 10 A surface mount fuse on the board. To avoid blowing this fuse, do not operate
aijuboard with a power supply capable of supplying 10 A or more (e.g. PC power supplies) without
an extra fuse.

� Do not operate aijuboard on a conductive surface.

� Do not place jumpers in any position not specifically mentioned in this manual.

� The heatsink is glued to the system-on-chip. Do not try to remove the heatsink and take care never to
apply too much force to it, even accidentally.

2. Quick start guide

1. Verify that both the TX and RX jumpers on P3 are in place. Verify that the boot jumper on P1 is set
to ‘ROM’ and not ‘JTAG’.

2. Insert an SD card with a bootable image; alternatively, connect Ethernet and set up another Plan 9
computer to DHCP boot, using the the zynq kernel (the default MAC address is0ea7deadbeef ).

3. Connect the USB-B connector to a host. Linux and 9front should work out of the box, you may need
to install FT2232H drivers on Windows.

4. Connect the board to the power supply. The ‘power’ LED should turn on.

5. Open a terminal program on the host set to 115200 baud 8N1. You want to use thesecond serial port
provided by the FT2232H, e.g. on 9front run

echo b115200 >/dev/eiaU*.1ctl
con -r /dev/eiaU*.1

whereas on Linux you should run

screen /dev/ttyUSB1 115200
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3. Introduction

aijuboard is a single board computer built around the Xilinx Zynq XC7Z015-1CLG485C system-on-
chip (SoC). It has two ARM Cortex-A9 MPCore CPUs that together with supporting devices form the
‘Processing System’ (PS). In addition it has a 46,200 LUT field-programmable gate array (FPGA) using
Xilinx 7 Series (Artix-7) Architecture that forms the ‘Programmable Logic’ (PL). We will usually be
sloppy with terminology and refer to the PS and PL as the CPU and the FPGA, respectively. Almost all
devices are connected to one of the CPU or the FPGA and cannot directly be accessed by the other (an
exception to this is 1 GB of DDR3 memory that is shared between the CPU and FPGA). This means in
particular that during FPGA development (i.e. frequent reprogramming of the FPGA with your own bit-
streams), you will not have access to the FPGA connected devices such as Displayport or SATA.

The SoC is very well documented in the Xilinx UG585 Zynq Technical Reference Manual (TRM).
You are referred to this document for details on register interfaces etc. If you want to work on the 9front
kernel or write your own kernel, you should definitely peruse this document.

4. CPU devices

For the most part the CPU devices should ‘just work’ with the 9front kernel. The devices accessible
by the CPU subsystem are

� 10/100/1000 Ethernet using the Zynq’s MAC and the Micrel KSZ9031RNX PHY. The bootloader
sets the MAC address to0ea7deadbeef , but you could equally well set it to any other valid MAC
address.

� 2× USB 1.1/2.0 host ports using the Zynq’s EHCI controller and Texas Instruments TUSB1210
PHY.

� A serial line. On boot it is setup as 115200 baud, 8 bits, no parity, one stop bit. This is by default
connected to the FT2232H USB-to-serial (and USB-to-JTAG) converter. By removing the jumpers
on P3 it is possible to get direct access to the 3.3 V level signals which could be connected to, e.g., a
RS232 level converter.

� 16 MB of flash memory (N25Q128). Currently this is used only to store the bootloader. It could
also store the kernel but the code is not there for it yet. The 64 KB sector size limits its applicability.

� an SD card slot. None of the UHS modes are supported and the maximum speed is hence 25 MB/s.

5. Introduction to using the FPGA

This section is meant to be a ‘tutorial’ that describes how to take a simple design from Verilog to run-
ning it on the FPGA. First of all you will, of course, need a design to run. As a first example we will use
the programblink.v reproduced below that shows a single light ‘rotating’ around the LEDs.

First of all, line 1 disables implicit declaration of wires, a very annoying Verilog ‘feature’ that is well
worth turning off. Now, to do anything non-trivial you will need a clock from somewhere. The Zynq has a
clock generator on the chip. To access it, you need to instantiate thePS7 module, done here in l. 19�21.
Note the use of aDONT_TOUCHattribute to prevent Vivado from optimizingPS7 away which it some-
times does. The four clocks are supplied as a four bit vector; since we only care about the first one we
define an aliasclk in l. 6. By default this clock is set to 100 MHz. Accessing the LEDs is a bit more
straightforward, for now just declare it as a port in l. 3.

The actual logic is l. 7�18. We use a 6 bit register to hold the current LED state (defined in l. 3) and
a 32 bit counter to keep track of time. The counter is incremented until it reaches 49,999,999; after that it
rolls over to zero. When the counter rolls over, the output register is rotated one bit to the left, using the{}
operator for bit concatenation, in l. 16.

__________________
PS and PL are the terms used in Xilinx documentation but they are not as evocative as the more common terms CPU and
FPGA. It should be pointed out that they are technically more correct, as the PSand PL contain more than just a CPU (nev-
er mind that there are two cores!) and an FPGA.
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1 ‘default_nettype none

2 module blink(
3 output reg [5:0] led
4 );

5 wire [3:0] fclkclk;
6 wire clk = fclkclk[0];

7 reg [31:0] ctr;

8 localparam PERIOD = 50000000;

9 initial begin
10 ctr = 0;
11 led = 6’b000001;
12 end

13 always @(posedge clk)
14 if(ctr == PERIOD - 1) begin
15 ctr <= 0;
16 led <= {led[4:0], led[5]};
17 end else
18 ctr <= ctr + 1;

19 (* DONT_TOUCH="YES" *) PS7 PS7_i(
20 .FCLKCLK(fclkclk)
21 );

22 endmodule

You also need a constraints file that defines various ‘implementation details’, most importantly what
pins correspond to which Verilog ports. Since this file is rather tedious to maintain, a script is provided in
the appendix that autogenerates it as follows.

$ aijupins11 > blink.xdc
LED0 led[0]
LED1 led[1]
LED2 led[2]
LED3 led[3]
LED4 led[4]
LED5 led[5]
EOF

The first column defines the hardware signal name (see the script for a list) and the name of the corre-
sponding Verilog port.

To build this system we now need to use Vivado. Vivado has two basic modes called project mode
and non-project mode. In project mode Vivado maintains a ‘project’ on disk that contains all the metadata
about your program. In non project mode projects are created only temporarily in RAM; each build creates
a new project. The main advantage of project mode is that, when used with the GUI, it leads to a workflow
similar to IDEs such as Visual Studio or Eclipse. Which is why we are not going to use it. With a scripted
workflow non-project mode is more pleasant to use as it leaves around fewer pointless files on disk. It’s
also faster because it keeps things in RAM. And it uses less RAM, too (please don’t ask me how that
makes sense).

A basic script for Vivado’s non-project mode is shown below. It closes any open projects and creates
a new ‘project’ in RAM for the part we are using. It reads in our Verilog file and constraints file (\ lets you
split one command over multiple lines, used here so you can expand the script by adding lines for all files
in your project). It then synthesizes, places and routes the design, creating ‘checkpoints’ named*.dcp as
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it goes through these steps. These checkpoints are useful if you want to examine the output of the synthesis
tool, which can be useful for debugging. It writes a timing summary and utilization report into*.rpt
files. You will probably get awfully familiar with these reports once you start doing more advanced
designs, but for now don’t worry too much. Line 21�23 prints out a warning if timing fails which means
you don’t have to check the timing summary every time to compile to find out whether your design would
actually work. The script also converts the design into a bitstream that can be loaded into an FPGA using
thewrite_bitstream command.

You can run scripts either from the command line by simply doing

vivado -mode batch -source build.tcl

or you can alternatively run them in the GUI by typingsource build.tcl in the TCL console. Run-
ning them in the GUI has the benefit that the design remains open for you to examine (F4 is a particularly
useful key that brings up the schematic view).

The write_bitstream command creates output in a format the FPGA actually likes. It creates
both a.bit and a.bin file, the former is the format used by Xilinx tools, whereas the latter is the ‘flat
binary’ format that gets loaded into the FPGA. Except that for some reason it is in the wrong endianness.
We can abusepcmconv(1) to convert it into the proper format as follows

audio/pcmconv -i u32r1c1 -o U32r1c1 <build/out.bin >/whatever/out.bin

The byte swappedout.bin file thus generated can now be loaded into the/dev/pl device and the
LEDs should now be ‘rotating’. You can ignore the warning

temperature sensor reads 0, shouldn’t happen

that may get printed on the console, it’s a kernel bug that will be fixed eventually.

1 set thepart xc7z015clg485-1
2 close_project -quiet
3 create_project -in_memory -part $thepart

4 set top blink

5 read_verilog n
6 blink.v n

7 read_xdc blink.xdc

8 set outputDir ./build
9 file mkdir $outputDir

10 synth_design -top $top -part $thepart -flatten_hierarchy none
11 write_checkpoint -force $outputDir/post_synth
12 opt_design
13 place_design
14 write_checkpoint -force $outputDir/post_place
15 phys_opt_design
16 route_design
17 write_checkpoint -force $outputDir/post_route

18 report_timing_summary -file $outputDir/post_route_timing.rpt
19 report_utilization -file $outputDir/post_route_util.rpt

20 write_bitstream -force -bin_file -file $outputDir/out.bit

21 if {! [string match -nocase {*timing constraints are met*} n
22 [report_timing_summary -no_header -no_detailed_paths -return_string]]} n
23 {puts "timing constraints not met"}
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6. The CPU-FPGA interface

The CPU can program the FPGA using the internal configuration access port (ICAP). In 9front this
is achieved by simply copying the bitstream into/dev/pl . To get a suitable bitstream you need to set
Vivado to generate a.bin file and then reverse the byte order, which is achieved most simply by piping it
through the 9front command

audio/pcmconv -i u32r1c1 -o U32r1c1

The FPGA is allocated two 1 GB regions, named MAXIGP0 and MAXIGP1, in the physical memory
map at0x40000000 . Part of this region can be imported into a user program using theaxi segment and
segattach(2), e.g. as follows

ulong *reg = segattach(0, "axi", 0x40000000, 0x40000000);

(you can also useseg(1) to access it fromrc(1)). On the FPGA side you have to implement an AXI3 slave
interface connected to the MAXIGP0 / MAXIGP1 ports of the PS7 macro block. Since there is quite a lot
of complexity in AXI3, I wrote a moduleaxi3.v that does most of the legwork and that is described
below.

The interfaces just described were ‘slaves’ interfaces, i.e. the transfer has to be performed by the
CPU. They are great for memory-mapped registers and small memories, but for large transfers this may be
unacceptably slow and wastes CPU time. Alternatively, the FPGA can take a more active role in memory
transfers using the ‘master’ interfaces. With them the FPGA can access memory completely independent
from the CPU and you can burst memory as fast as you want, subject of course to the system’s total mem-
ory bandwidth (approx. 2 GB/s).

There is a total of seven master interfaces, to witSAXIGP[01] , SAXIHP[0123] andSAXIACP
(usingrc(1) notation; nomenclature gets confusing because, from the CPU side, theMAXI* interfaces are
the master interfaces andSAXI* are the slave ones). The general purpose (GP) interfaces are meant for
low bandwidth application and can access the device registers. The high performance (HP) interfaces are
optimized for high throughput and can only access memory. The accelerator coherence port (ACP) inter-
face is coherent with L1 cache. Note that the other interfaces access DRAM directly and it is the user
program’s responsibility to flush caches as needed.

To implement master interfaces you will have to deal with AXI3 yourself, however there is less work
to be done as you can just not use the features you don’t need. See my document on the PS7 interfaces and
ARM’s AXI specification [AXI].

7. FPGA devices

As previously mentioned to access these devices from the CPU you will have to load a bitstream that
provides an interface using, e.g., memory mapped registers. At some point in the future we may provide a
‘canonical’ bitstream that provides a standard CPU interface to all of these devices.

� DisplayPort. Connected to two high speed serial (GTP) transmitters. It supports two lane at 1.62
Gbit/s and 2.7 Gbit/s each. We currently have code that implements basic DisplayPort 1.1 function-
ality but it’s still relatively unpolished, see [DP]. It is possible to remove the DMA code from this
code and use it for your own designs.

� Serial ATA. Connected to a high speed serial (GTP) transmitter/receiver pair. No code yet. The
connector could very well be abused for a generic high speed serial link (up to around 3 Gbit/s) to
other boards. There is a possibility that, with a small adapter board, it could be used for single lane
PCI express, but this has not been tried yet.

� GPIO. There are a total of 30 general purpose input/output (GPIO) pins available on a standard 2.54
mm connector. Only 3.3 V standards are supported, i.e.LVCMOS33, LVTTL, PCI33_3 , and are
the only supported I/O standards (if you don’t know what I/O standard to use, you probably want

__________________
The DisplayPort specifications starting with version 1.2 is a closely held secret (encrypted PDFs with hardware dongles)
and will probably never be implemented unless the specification leaks.
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LVCMOS33).

Do not connect these pins to any voltage higher than 3.85 V; in particular they may be damaged by
5 V outputs (5 V TTL, but not CMOS, inputs can be driven from 3.3 V).

It is worth pointing out that the FPGA has an analog-to-digital converter called the XADC on some
of these pins. You are referred to Xilinx UG480 for further details.

_________________________
GPIO connector P4 pinout_________________________

5V 1 2 GND_________________________
GND 3 4 3V3_________________________
GP0 5 6 GP1_________________________
GP2 7 8 GP3_________________________
GP4 9 10 GP5_________________________
GP6 11 12 GP7_________________________
GP8 13 14 GP9_________________________

GP10 15 16 GP11_________________________
GP12 17 18 GP13_________________________
GP14 19 20 GP15_________________________
GP16 21 22 GP17_________________________
GP18 23 24 GP19_________________________
GP20 25 26 GP21_________________________
GP22 27 28 GP23_________________________
GP24 29 30 GP25_________________________
GP26 31 32 GP27_________________________
GP28 33 34 GP29_________________________























































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

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
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
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
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
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
















� Audio. Two FPGA pins (LSOUNDandRSOUND) are connected, through a low-pass filter and ampli-
fier to a headphone jack. To produce sound you have to toggle the pins at the right rate; a delta-
sigma converter will do the job very nicely.

� LEDs. There are six LEDs available as active-high signals (LED[0-5] ). Not much else to say.

� I2C. There is an I2C bus on the board that has an accelerometer (0x1D) and a GPIO expander
(0x20 ) on it. Additionally the bus is wired to connector P2 to allow for small expansion boards.

_______________________
I2C connector P2 pinout_______________________
SDA 1 2 3V3_______________________
GND 3 4 SCL_______________________
INT 5 6 NC_______________________



























� Accelerometer. A Freescale MMA8652FC 3-axis, 12-bit accelerometer is wired to the I2C bus at
address (0x1D).

� GPIO expander for system management. A MCP23009 expander at address0x20 provides various
miscelleanous signals. Since the kernel does not like when you randomly reset its devices, you
should be careful with this register.
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__________________________________________________________
Bit Name Dir. Function__________________________________________________________

0 ETHINT In Ethernet PHY interrupt__________________________________________________________
1 ETHRESET Out Ethernet PHY reset__________________________________________________________
2 USB0RESET Out USB 0 PHY reset__________________________________________________________
3 USB1RESET Out USB 1 PHY reset__________________________________________________________
4 ETHLED3 Out Ethernet Jack LED__________________________________________________________
5 USB0OC In USB 0 Overcurrent__________________________________________________________
6 USB1OC In USB 1 Overcurrent__________________________________________________________
7 GPIORESET Out Available at P7 (see Jumper Settings)__________________________________________________________

































































Acknowledgements

Many thanks to all the people who contributed to the aijuboard Indiegogo campaign and the people
who bought the board. A special thanks to Ian Sutton (kremlin), rlevi and spew. And of course a special
thanks to cinap_lenrek who wrote a large amount of the kernel code.

Appendix: Script to map signal names to FPGA pins
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#!/bin/rc
echo ’set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.UNUSEDPIN PULLUP [current_design]
create_clock -name FCLK -period 10.000 [get_pins {PS7_i/FCLKCLK[0]}]’
sed ’s/#.*//g
/^[ ]*$/d’ $1 | sort | join -a1 /fd/0 /fd/3 <<[3]END | awk ’ { if(NF == 2)

print "unknown pin", $1 > "/fd/2"; else printf("set_property IOSTANDARD %s " n
"[get_ports {%s}] 0et_property PACKAGE_PIN %s [get_ports {%s}] 0, $4, $2, $3, $2); } ’
CLK T2 LVCMOS33
GP0 C6 LVCMOS33
GP1 E4 LVCMOS33
GP10 F1 LVCMOS33
GP11 G2 LVCMOS33
GP12 G1 LVCMOS33
GP13 H3 LVCMOS33
GP14 H1 LVCMOS33
GP15 J2 LVCMOS33
GP16 J1 LVCMOS33
GP17 K3 LVCMOS33
GP18 K2 LVCMOS33
GP19 L2 LVCMOS33
GP2 E3 LVCMOS33
GP20 L1 LVCMOS33
GP21 L4 LVCMOS33
GP22 M4 LVCMOS33
GP23 M3 LVCMOS33
GP24 M2 LVCMOS33
GP25 M1 LVCMOS33
GP26 N3 LVCMOS33
GP27 N1 LVCMOS33
GP28 P3 LVCMOS33
GP29 P2 LVCMOS33
GP3 A1 LVCMOS33
GP4 D3 LVCMOS33
GP5 C1 LVCMOS33
GP6 D2 LVCMOS33
GP7 D1 LVCMOS33
GP8 E2 LVCMOS33
GP9 F2 LVCMOS33
HOTPLUG R2 LVCMOS33
INT A7 LVCMOS33
LED0 C5 LVCMOS33
LED1 C3 LVCMOS33
LED2 B2 LVCMOS33
LED3 B1 LVCMOS33
LED4 B3 LVCMOS33
LED5 A2 LVCMOS33
LSOUND A4 LVCMOS33
RSOUND B4 LVCMOS33
SCL A6 LVCMOS33
SDA A5 LVCMOS33
END


